Rare Earth Element Yttrium Modified Mg-Al-Zn Alloy: Microstructure, Degradation Properties and Hardness
نویسندگان
چکیده
The overly-fast degradation rates of magnesium-based alloys in the biological environment have limited their applications as biodegradable bone implants. In this study, rare earth element yttrium (Y) was introduced into AZ61 magnesium alloy (Mg-6Al-1Zn wt %) to control the degradation rate by laser rapid melting. The results showed that the degradation rate of AZ61 magnesium alloy was slowed down by adding Y. This was attributed to the reduction of Mg17Al12 phase and the formation of Al₂Y phase that has a more active potential, which decreased galvanic corrosion resulting from its coupling with the anodic matrix phase. Meanwhile, the hardness increased as Y contents increased due to the uniform distribution of the Al₂Y and Mg17Al12 phases. However, as the Y contents increased further, the formation of excessive Al₂Y phase resulted in the increasing of degradation rate and the decreasing of hardness due to its agglomeration.
منابع مشابه
Grain Refinement and Enhancement of Mechanical Properties of Hot Extruded Rare-Earth Containing Magnesium Alloy
The effects of rare earth addition and hot extrusion process on the grain refinement of magnesium alloy were studied. The as-cast Mg-6Al-1Zn (AZ61) alloy had the average grain size of ~ 64 µm and its microstructure consisted of α-Mg and Mg17Al12 phase. By partial substitution of Al with Gd to reach Mg-4.8Gd-1.2Al-1Zn alloy, it was observed that the Mg17Al12 phase disappeared and two new interme...
متن کاملEffect of Y Addition on the Microstructure and Mechanical Properties of Sn-Zn Eutectic Alloy
The effect of Yttrium addition on the microstructure and mechanical properties of Sn-Zn eutectic alloy, which has been attracting intensive focus as a Pb-free solder material, was investigated in this study. Phase equilibrium has been calculated by using FactSage® to evaluate the composition and fraction of equilibrium intermetallic compounds and construct a phase diagram. In the case of Sn-8.8...
متن کاملEFFECTS OF A MODIFIED SIMA PROCESS ON THE STRUCTURE, HARDNESS AND MECHANICAL PROPERTIES OF Al-12Zn-3Mg-2.5Cu ALLOY
A modified strain-induced melt activation (SIMA) process was applied and its effect on the structural characteristics and hardness of the aluminum alloy Al–12Zn–3Mg–2.5Cu was investigated. Specimens subjected to a deformation of 40% at 300 °C were heat treated at various times (10-40 min) and temperatures (550-600 °C). Microstructural studies were carried out using opt...
متن کامل“ Microstructural and mechanical properties of eutectic Al – Si alloy with grain refined and modified using gravity - die and sand casting ”
This paper attempts to investigate the influence of the microstructure and mechanical property changes on sand casting and permanent die casting alloys by grain refinement, modification combined action of both (Al– 3Ti–1B + Al–10Sr) and without grain refinement and modification effect. The microstructures of the castings are studied by optical microscopes. The microstructure and mechanical prop...
متن کاملImproving of Microstructure and Mechanical Properties of Al-A356 Alloy with Compo-Casting Method
Aluminum/alumina composites are used in automotive and aerospace industries due to their low density and good mechanical strength. In this research, the effect of mechanical stirring of slurry in liquid-solid phase temperature and injection of alumina powder with inert gas (Ar) on microstructure and mechanical properties of Al-A356 alloy is investigated. In order to improve of the wettability a...
متن کامل